Multistage Modified Sinc Method for Solving Nonlinear Dynamical Systems

Authors

Abstract:

The sinc method is known as an ecient numerical method for solving ordinary or par-tial dierential equations but the system of dierential equations has not been solved by this method which is the focus of this paper. We have shown that the proposed version of sinc is able to solve sti system while Runge-kutta method can not able to solve. Moreover, Due to the great attention to mathematical models in disease, the detailed stability analyses and numerical experiments are given on the standard within-host virus infections model.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

full text

Dynamical Systems Method for solving nonlinear operator equations

Consider an operator equation (*) B(u) + u = 0 in a real Hilbert space, where > 0 is a small constant. The DSM (Dynamical Systems Method) for solving equation (*) consists of finding and solving a Cauchy problem: u̇ = Φ(t, u), u(0) = u0, t ≥ 0, which has the following properties: 1) it has a global solution u(t), 2) this solution tends to a limit as time tends to infinity, i.e., u(∞) exists, 3) ...

full text

Dynamical systems method for solving nonlinear equations with monotone operators

A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear equations with monotone operators in a Hilbert space is studied in this paper. An a posteriori stopping rule, based on a discrepancytype principle is proposed and justified mathematically. The results of two numerical experiments are presented. They show that the proposed version of DSM is numerically efficient. The...

full text

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

full text

Sinc operational matrix method for solving the Bagley-Torvik equation

The aim of this paper is to present a new numerical method for solving the Bagley-Torvik equation. This equation has an important role in fractional calculus. The fractional derivatives are described based on the Caputo sense. Some properties of the sinc functions required for our subsequent development are given and are utilized to reduce the computation of solution of the Bagley-Torvik equati...

full text

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  27- 37

publication date 2017-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023